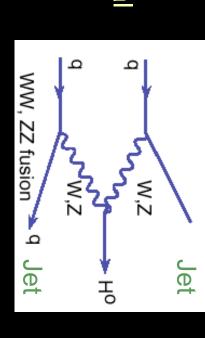
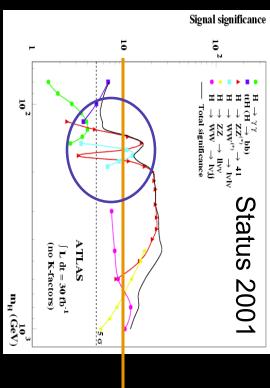
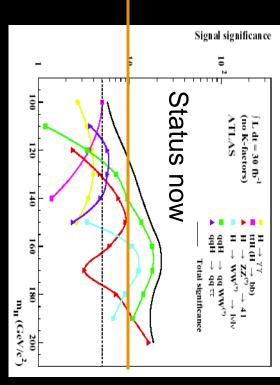
Electroweak Symmetry Breaking Working Group Summary Part II: Experiment

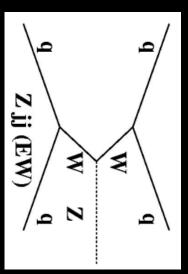

Young-Kee Kim
The University of Chicago

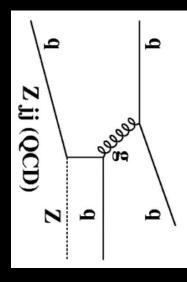

Workshop Structure (experiment)


- Global Fit of Electroweak Precision Measurements
- LEP-I, SLC, LEP-II, Tevatron-I, nuTeV, ... (Robert Clare)
- Overview of Collider Experiments
- Tevatron (Elvira, McNamara, Wang, Watts)
- LHC (Marcus Schumacher)
- LC (Aurelio Juste)
- Testing Higgs potentials with hadron & e⁺e⁻ colliders (Albert DeRoeck)
- Discussion Sessions
- Tevatron centric the only running collider for EWSB
- What is the real capability of Tevatron Run II for EWSB?
- Tevatron-LHC Connection
- How could Tevatron help prepare LHC physics?
- Contributed talks (targeted for young physicists)
- 8 experiment abstracts 5 given at this workshop
- 4 theory abstracts 4 given at this workshop

LHC SM Higgs (recent improvements)

- SM Higgs Discovery
- New channels for low M_H (proposed by Rainwater, Zeppenfeld et al.)
- Vector Boson Fusion
- Higgs -> □⁺□, W⁺W⁻, invisible largely increase discovery potential
- allow to measure Higgs couplings
- good for invisible decays
- » Br(invisible) limit ~20%

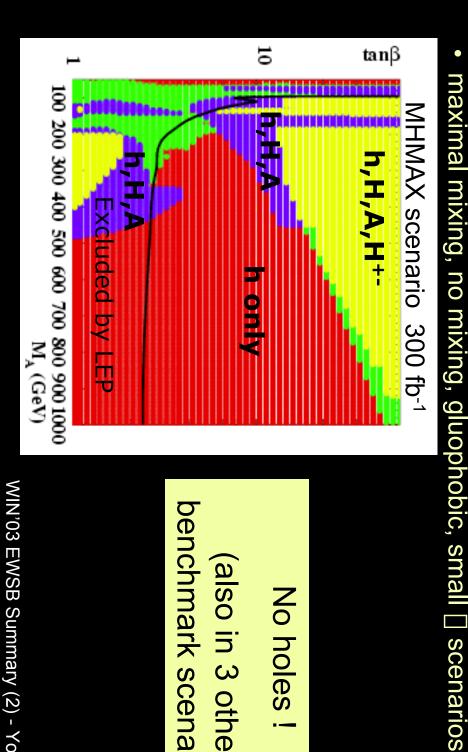




WIN'03 EWSB Summary (2) - Young-Kee Kim

LHC SM Higgs (recent improvements)

- Dominant backgrounds
- e.g. H → ||

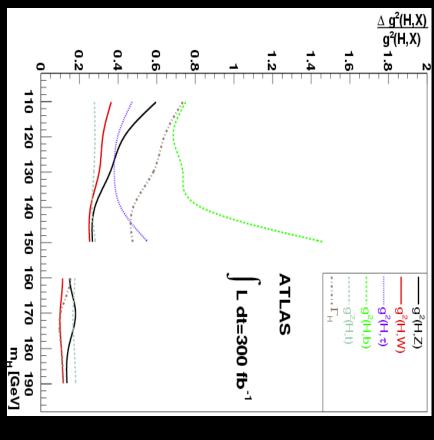


- To be done: reinvestigate discovery potential with
- NLO MC
- Improved matching ME + parton shower (Herwig/Pythia)
- parton shower matching, etc. using W + 2-jets Tevatron can play a role in evaluating NLO calculations, ME +
- Tevatron-LHC connection

Updated LHC MSSM Scan

- Recent Improvements
- New calculations for masses and branching ratios
- New channels added, in particular VBF channels
- New benchmark scenarios considered

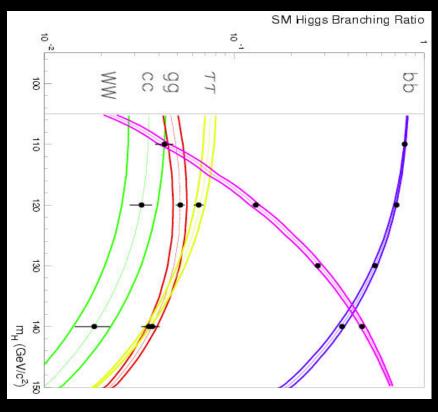
No holes!


benchmark scenarios) (also in 3 other

WIN'03 EWSB Summary (2) - Young-Kee Kim

Higgs Couplings: LHC & LC

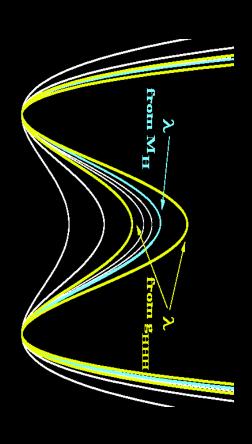
LHC:


~3 years of high lum running

Duhrssen, ATL-PHYS-2003-030

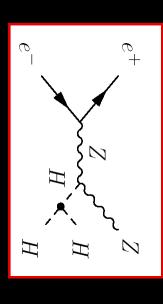
e⁺e⁻ LC:

 $\sqrt{s} = 350 \text{ GeV}, L = 500 \text{ fb}^{-1}$



Battaglia, Desch, hep-ph/0101165

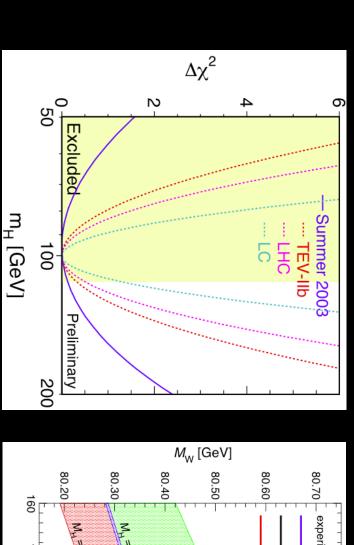
WIN'03 EWSB Summary (2) - Young-Kee Kim

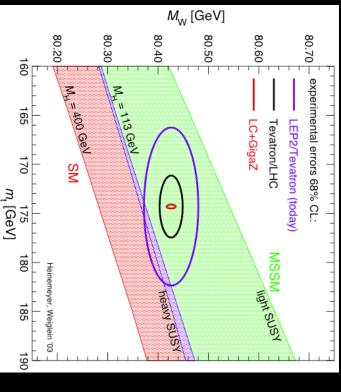

Testing the Higgs Potential

- Determination of the shape of the Higgs potential
- needed for the complete investigation of the Higgs profile and to obtain a direct proof of the mechanism of EW symmetry breaking
- Tests may reveal the extended nature of the Higgs sector.

Access via Higgs self coupling

$$V_H = \frac{m_H^2}{2} H^2 + \left(\frac{m_H^2}{2v} H^3\right) + \frac{m_H^4}{8v^2} H^4$$

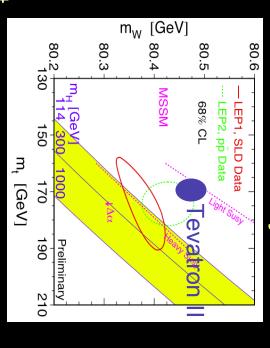

WIN'03 EWSB Summary (2) - Young-Kee Kim


Testing the Higgs Potential

- Hadron Colliders
- LHC will have a hard time to measure.
- Can possibly establish that $\square_{HHH} \neq 0$ if 150 < $M_H < 200$ GeV
- SLHC (luminosity upgraded LHC) can measure \square_{HHH} to
- 20-30% if 150 < M_H < 200 GeV, 50-80% if 120 < M_H < 140 GeV.
- VLHC can measure □_{HHH} to
- 4-15% if $140 < M_H < 200$ GeV, 20-40% if $120 < M_H < 140$ GeV.
- Lepton Colliders
- LC (0.5 1 TeV) can measure $□_{HHH}$ to 20-35% if M_H < 140 GeV.
- CLIC (1 5 TeV) can measure \square_{HHH} to 7-15% if M_H < 240 GeV.
- LC results can improve by factor up to 1.3-1.7 with polarized beam.

EWK Precision Measurements

- Testing models, building models
- Current measurements
- Most of technicolor models are disfavored.
- Exclude the Little Higgs model with new physics scale < 3-4 TeV.
- Future
- Further constraining models/theories (with discoveries)

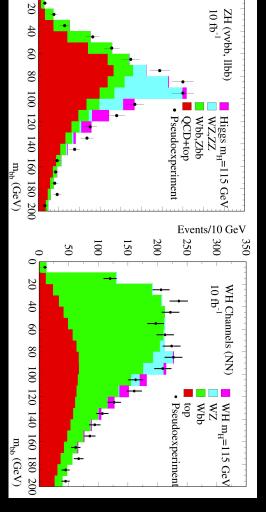


WIN'03 EWSB Summary (2) - Young-Kee Kim

Tevatron EWSB Capability (1)

- What is the real capability of Tevatron Run II to study EWSB?
- EWK precesion measurements
- ($\square M_{top} \sim 2 GeV$) provides important information to some model builders.

- SM Higgs Discoveries:
- Discovering the SM Higgs is the hardest.
- M_H > ~120 GeV
 @95% CL


Events/10 GeV 225 175

150

100

75 50

115 GeV Higgs → From WH, ZH Production (10 fb⁻¹)

Tevatron EWSB Capability (2)

- MSSM (sparticle masses ~ 1 TeV, maximal stop mixing)
- Exclude the entire para. space with 5 fb⁻¹.
- Other new things
- MSSM
- NMSSM
- Dynamical EWSB
- GUT-inspired models (eg. Light Higgs triplet)
- ExtraD-EWSB
- CP violation in Higgs sector
- Others

- Studies done in some cases, but we need to make one coherent document.
- Further studies to be done in some other cases (Tevatron, LHC)
- NMSSM
- Little Higgs
- Radion -> ∏(ED)
- CP violation in Higgs sector
- 3 b-jets at Tevatron
- Fermiphobic scenario at Tevatron
- We have assigned tasks to individuals.

We will make one document in a couple of months.

Tevatron - LHC Connection

- How can the Tevatron help prepare LHC physics?
- Led by Dieter Zeppenfeld and Bruce Mellado
- Higgs search at LHC needs reliable background simulations.
- Tevatron can provide important information for
- tuning parton and particle level Monte Carlos
- Matrix Element calculations interfaced with Pythia/Herwig
- Tevatron experience
- M_{top} and top properties (U.K. Yang, F. Canelli)
- Heavy gauge boson searches (Y.S. Chung)
- Single top searches: V_{tb} (C. Ciobanu)
- ME + parton shower matching, etc. (Steve Mrenna)
- Young physicists at Tevatron will contribute tremendously to LHC

We will make one document in a couple of months. (S. Mrenna et al.)

Concluding Remarks

- It has been a very useful workshop.
- enough discussions
- We initiated two documents
- expected in a couple of months
- useful information to
- Tevatron physicists
- LHC physicists
- DoE/NSF funding agencies
- Many thanks to the organizers for this wonderful workshop.